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Abstract

Dataflow models serve as useful abstractions of digital hardware in signal processing and other ap-
plication domains. But when can one say that a certain dataflow model faithfully captures a given piece
of hardware? The question is investigated in this paper. Finite state machines with synchronous seman-
tics are used to model hardware. Asynchronous processes communicating via queues are employed for
dataflow. A conformance relation between these two heterogeneous models of computation is developed
that preserves performance properties such as worst-case throughput and latency.

1 Introduction

Dataflow is a model of computation where a set of concurrent processes communicate asynchronously by
exchanging data through a set of (usually FIFO) queues. Dataflow is popularly used to specify, analyze,
and implement multi-rate computations that operate on infinite streams of data. The expressiveness of the
dataflow model in naturally capturing streaming applications, coupled with its strong formal analysis proper-
ties, has made it prominent in modern embedded systems design, particularly in the domains of multimedia,
digital signal processing, and communication.

One of the typical uses of dataflow in embedded system design is to model systems implemented in
hardware (HW). The primary motivation for this is the fact that many dataflow models, such as SDF [20],
CSDF [2], SADF [27] admit efficient static compile time methods for computing key performance metrics
of an embedded system, such as throughput, latency, or buffer sizes. In principle these metrics could be also
computed at the (cycle-accurate) HW level (e.g., VHDL or Verilog programs). In fact, doing so presents sev-
eral advantages over doing the same analysis at the dataflow level: (1) it does not require building dataflow
models; (2) it is more accurate, as it operates directly on the HW description. But it also suffers from a

∗This work was supported in part by NSF Award #1138996 Expeditions in Computer Augmented Program Engineering (Ex-
CAPE), and by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley, which receives support from
NSF (awards #1035672 (CPS: Medium: Timing-Centric Software), #0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs)),
the U. S. Army Research Office (ARO #W911NF-11-2-0038), the Air Force Research Lab (AFRL), the Multiscale Systems Center
(MuSyC), one of six research centers funded under the Focus Center Research Program, a Semiconductor Research Corporation
program, and the following companies: Bosch, National Instruments, Thales, and Toyota.
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major disadvantage, namely, state explosion due to huge state spaces. This makes it infeasible in practice.
Analysis of dataflow models, on the other hand, is much more efficient because these models abstract much
of the information contained in the HW descriptions. For example, they typically omit data values and use
only abstract notions of tokens. The timing properties of the system are often independent of data values. In
cases where they are dependent, abstraction techniques can be used to build dataflow models that have no
data values, yet conservatively approximate the behavior of the HW (e.g., using non-determinism).

Still, two questions remain, namely: (1) how to build a dataflow model for a given piece of HW, and
(2) how to ensure that the model is “faithful”, or at least conservative, with respect to the original HW. In
fact, it is unclear what faithful even means. A prerequisite for answering (1) and (2) is to make the notion
of faithfulness precise, and this is the question that concerns us in this paper.

When attempting to define faithfulness, we are faced with the following difficulty. The dataflow model
of computation is very different from the model of computation of synchronous digital hardware. To model
the latter, one typically uses finite state machines (FSMs) with synchronous semantics. An FSM commu-
nicates with its environment by means of input/output signals that take Boolean values in a succession of
synchronous rounds. In the dataflow model of computation, on the other hand, a set of concurrent processes
execute asynchronously and communicate by means of consuming and producing tokens from/to a set of
queues. It appears that the two models “live in different worlds” and that comparing them is a bit like
comparing apples and oranges.

In this paper, we study this comparison problem. Our goal is to bridge the semantic gap between
dataflow models and HW implementations. We do this by defining a formal conformance relation between
FSMs (modeling HW) and dataflow processes, which we propose as a formal operational model for dataflow.
Dataflow processes have a notion of time that we use to map to HW clock cycles.1 In addition, we require
explicit signals at the HW level that allow us to observe token production and consumption events that are
primitive events at the dataflow level. Conformance is then defined with respect to a mapping of HW signals
to the above events, which allows to translate HW behaviors to dataflow behaviors.

In the rest of the paper, and after discussing related work, we briefly review FSMs and their composition
in Section 2 and propose an operational process model for dataflow in Section 3. We present a conformance
relation between FSMs and dataflow networks in Section 4, discussing the rationale behind the definition and
illustrating the concepts through a series of examples. Conclusions and plans for future work are presented
in Section 5.

1.1 Related Work

Prior research has extensively studied methods to generate (HW or SW) implementations from dataflow
models. Algorithmic solutions have been developed for joint code and buffer size optimization, throughput
computation, buffer sizing under throughput constraints, and schedule computation [1] [20] [22] [26] [32]
[18]. The focus of these solutions is predominantly to deliver software implementations for processor tar-
gets. Hardware generation from dataflow models has also been extensively studied, e.g., in [19, 33, 12, 15,
13, 28, 5, 23]. The goals of that line of work are akin to those of high-level synthesis, namely, obtain-
ing efficient HW implementations automatically from high-level descriptions. Even if we admit that these
methods are correct-by-construction, in which case the resulting implementation is guaranteed to conform
to the high-level description, there is still a need to explicitly define conformance, something missing from

1 There are also untimed dataflow models (e.g., untimed SDF [20]). Timed properties such as throughput cannot be evaluated
on untimed models. It is therefore hard to see how one could bridge the gap between a timed and an untimed model, while at the
same time preserving such properties. For this reason, we work with a timed dataflow model.
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the above works. An explicit notion of conformance is useful in the context of high-level synthesis, for in-
stance, in order to catch compiler bugs. But conformance is also useful in other contexts, for instance, when
abstract models are used to estimate performance of an existing HW system (e.g. [10]), or in the context of
IP integration (e.g. [29]).

The problem of bridging the semantic gap between hardware and higher-level models arises in many
abstraction-based design and verification methodologies, such as transaction-level modeling (TLM), e.g. [9]
or equivalence checking between system-level and RTL models, e.g. [24]. A rigorous formalization of the
relation between the concrete (RTL) and the abstract (transaction- or system-level) models is often missing
in such methodologies, and it is unclear how such a relation could be defined, since the models “live in
different semantical worlds” (e.g., clock cycles vs. transactions). Indeed, the abstract models are often
untimed C programs and the focus is to check functional equivalence within a cycle [4].

The works [10, 29] pursue goals similar in spirit to this paper, however, they do not define a formal
conformance relation. [10] presents a method for building conservative dataflow models of a specific class
of network-on-chip channels. Our work aims to be more general, and applicable to general hardware mod-
eled as FSMs. The main focus of [29] is the synthesis of glue, and the notions of correctness and non-
defensiveness between models and systems are defined with respect to the glue (e.g., whether buffer sizes
estimated by the model are overly pessimistic or optimistic).

Formal conformance relations abound in the field of formal verification, such as trace inclusion, simu-
lation, bisimulation, and so on (see, for instance, [31, 30]). However, these works typically relate processes
that “live in the same world”, in other words, follow the same model of computation. In contrast, we develop
a conformance relation between two heterogeneous models that preserves key execution properties.

A formal refinement relation for a model of actors has been proposed in [8]. Actors are viewed as
relations between input and output timed traces and the refinement relation preserves worst-case throughput
and latency properties. Our work pursues goals similar to those pursued in that paper, however, there are
differences. The primary difference is that [8] uses an abstract, denotational model of actors, which does
not answer the question how to map the semantic gap between tokens and signals. Here we use operational
models for both dataflow and hardware, and directly consider how to map signals to tokens. A secondary
difference is that the refinement relation used in [8] is based on the “earlier the better” principle, whereas
here we employ the more traditional principle of subset of behaviors. More discussion on the relation to [8]
is provided in Section 5.

2 A Model for Hardware

We model hardware as finite-state machines (FSMs) and in particular Mealy machines [17].2 An FSM is a
tuple M = (X,Y, S, s0, δ, λ), where:

• X is a finite set of Boolean variables, called the input signals of M .

• Y is a finite set of Boolean variables, called the output signals of M .

• S is a finite set of states.

• s0 ∈ S is the initial state of M .
2 For simplicity, we use deterministic FSMs. However, the results, and in particular the definition of conformance, directly

extend to non-deterministic FSMs as well.
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• δ : S×2X → S is the transition function ofM : it takes a state s ∈ S and an input assignment a ∈ 2X

and produces a next state s′ = δ(s, a) ∈ S. An assignment is a function that assigns a value to each
of a set of variables. An input assignment is a function a : X → {0, 1} that assigns a Boolean value
to each input signal. δ is a total function meaning it is defined for any s ∈ S and a ∈ 2X .

• λ : S × 2X → 2Y is the output function of M : it takes a state s ∈ S and an input assignment
a ∈ 2X and produces an output assignment b = λ(s, a) ∈ 2Y . An output assignment is a function
b : Y → {0, 1} that assigns a Boolean value to each output signal. λ is a total function. For y ∈ Y ,
we define λy : S × 2X → {0, 1} to be the function that returns a Boolean value for output signal y,
given the current state and inputs. That is, λy(s, a) = (λ(s, a))(y).

An FSM M is closed if its set of input signals is empty, i.e., X = ∅. In that case, the transition and
output functions become simply functions of S: δ : S → S and λ : S → 2Y . If X 6= ∅ then M is called
open.

An FSMM is a Moore machine if the value of each one of its output signals only depends on the current
state and not on the inputs, that is, λ is only a function of S: λ : S → 2Y . Clearly, every closed FSM is
a Moore machine. More generally, we will say that a certain output signal y ∈ Y is a Moore output of M
if the value of that output only depends on the current state (whereas the value of other outputs may also
depend on the inputs), that is, λy is only a function of S: λy : S → {0, 1}. Clearly, M is a Moore machine
iff every output of M is a Moore output.

2.1 FSM semantics

An FSM M defines a set of behaviors of the form

s0
a0/b0 // s1

a1/b1 // s2
a2/b2 // · · ·

where si ∈ S, ai ∈ 2X , bi ∈ 2Y , si+1 = δ(si, ai) and bi = λ(si, ai), for all i. Intuitively, at synchronous
clock cycle i, if the current state is si and the current inputs are ai, then the current outputs are bi and the
next state (at clock cycle i+ 1) will be si+1. We say that the sequence (a0, b0)(a1, b1) · · · is an observable
behavior of M .

2.2 FSM example

An example of an FSM is shown in Figure 1. The top part of the figure shows the structure (or “black-box”
view) of the FSM, namely, its name Mbuf , its set of input signals {v1, r2} and its set of output signals {r1,
v2}. The bottom part of the figure shows the behavior of the FSM, namely, its set of states, initial state, and
transition and output functions. Mbuf models a simple buffer of size one. It has two states, denoted s0 and
s1, representing the fact that the buffer is empty and full, respectively. s0 is the initial state. The assignment
expressions inside the state represent the output function. For example, r1 := 1 at state s0 specifies that r1
is set to true when Mbuf is in that state (in this case, r1 does not depend on the inputs), and v2 := v1 ∧ r2
specifies that v2 is set to the logical conjunction of the two inputs.

Intuitively, the operation of Mbuf is as follows. Initially, the buffer is empty and declares it is ready to
receive input by setting r1 to 1. A writer may request to write something to the buffer (provided r1 = 1) by
asserting v1. If this is done, there are two cases: either a read is also requested simultaneously, by having
r2 = 1; or no read is requested at this time, i.e., r2 = 0. In the former case, the buffer acts as a “wire”, letting
the input “flow through” the output: v2 is set to 1 and the buffer continues to be empty. In the latter case, v2
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Mbuf

v1

r2r1

v2

s0:
r1 := 1

v2 := v1 ∧ r2
s1:

r1 := r2
v2 := r2

v1

v1 ∧ r2

v1 ∧ r2 r2

v1 ∧ r2v1 ∧ r2

Figure 1: Example FSM: structure (top) and behavior (bottom).

is set to 0 and the buffer moves to s1. The behavior at s1 is analogous. Notice that data values are abstracted
away in this FSM, and only control signals are captured.

2.3 FSM composition

FSMs can be composed with other FSMs. Different composition operators can be considered: parallel
composition (putting two FSMs “side by side”), serial composition (connecting an output signal of one
FSM to an input signal of another FSM), feedback composition (connecting an output signal of an FSM
to one of its input signals), and so on. The FSM model is compositional in the sense that, under quite
mild conditions, the composition of a set of FSMs (with respect to any of the above composition operators)
defines an FSM.

The conditions are imposed to avoid problems of cyclic dependencies during feedback composition: the
fact that the value of a signal may depend on itself. To avoid this, a typical condition is to require that in
order to form a feedback loop connecting an output signal y to an input signal x, y must be a Moore output.

We will not define FSM composition formally, as it is standard. Instead, we give an example. Consider
the composition of the three FSMs shown in Figure 2. Mbuf is the FSM from Figure 1, while the behaviors
of M1 and M2 are shown in Figure 2. The composite FSM M is shown at the bottom of the figure. M is
the synchronous composition of M1, Mbuf and M2, denoted M1 ×Mbuf ×M2. M has no input signals:
all its four signals r1, v1, r2, v2 are outputs. Therefore, by definition, M is a Moore machine. The vectors in
the lower half of each state denote the values of the four output signals r1, v1, r2, v2 in that state. Each state
of M is a composite state, that is, a vector describing the local states of the components of M . Since M1

is stateless (it has a single state that never changes) we omit its state from the composite vector and include
only the states of Mbuf and M2. Thus, state s12 of M represents the fact that Mbuf is at state s1 and M2 is
at state 2 (we suppose that the states of M2 are numbered 0, 1, 2).
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M1 Mbuf M2

v1

r2r1

v2

v1 := r1 r2 r2 r2

v2

v2

M1 M2

s00
1111

s01
1100

s12
0000

s10
1111

s11
0000

M = M1 ×Mbuf ×M2

Figure 2: Closed FSM M obtained by composing FSMs M1, M2 and Mbuf of Figure 1. The vectors in the
lower half of each state denote the values of the four output signals r1, v1, r2, v2 in that state.

3 A Model for Dataflow

A variety of formal models for dataflow systems exist in the literature, e.g., see [16, 6, 14, 7, 26, 8], although
they are not as standard as FSMs are for hardware. The operational model we present here is in the spirit of
those proposed in [7, 26]. The model in [7] is untimed, whereas our model includes time. On the other hand,
our model abstracts away from data which are included in [7]. The model in [26] is timed and data-abstract,
but it is limited to CSDF graphs, whereas our model captures a broader class of dataflow process (in fact,
broader than Kahn Process Networks, or KPNs [16]).

Time is typically introduced in dataflow models by means of a special action denoted tick, modeling the
lapse of one unit of time [25, 26]. We follow the same approach. Specifically, we model a dataflow system
using two types of components:

• Processes: These are finite-state automata whose transitions are labeled with actions of the following
three types: geti (get token from the i-th input queue), puti (put token into the i-th output queue), or
tick (one time unit elapses).

• Queues: These are essentially counters counting the number of tokens in the queue at a given point in
time. put actions increment the queue’s counter by one. get actions decrement the queue’s counter by
one when the counter is greater than zero, otherwise get is not possible. A queue may be unbounded
which means the counter can grow arbitrarily large, yielding an infinite-state automaton; or the queue
may be bounded meaning the counter can only grow up to a given constant K, at which point put is
no longer possible.

The above models abstract away from data and the functional aspects of dataflow. They only maintain
information on production/consumption of tokens and timing, which is our focus in this paper.

Formally, a dataflow process is modeled as an automaton A = (n,m, S, s0,→) where:

6



A

4

3 2

s0 s1 s2 s3

s4s5s6s7s8

tick

get

tick

get

tick

get

tick

tickticktickput

tick

put

tick

Figure 3: Example SDF process: structure (top) and behavior (bottom).

• n ≥ 0 is an integer representing the number of input ports of A. Each input port will be connected to
an input queue.

• m ≥ 0 is an integer representing the number of output ports of A. Each output port will be connected
to an output queue.

• S is a set of states (not necessarily finite).

• s0 ∈ S is the initial state of A.

• → ⊆ S × L× S is the transition relation of A, where the set of labels L is defined as follows:

L = {get1, get2, ..., getn, put1, put2, ..., putm, tick}

A transition (s, `, s′) ∈→ is also denoted s `→ s′.

Remark 1 Although our examples are simple dataflow processes that fall in the SDF or KPN classes, the
modeling framework as well as the conformance relation defined in Section 4 are more broadly applicable.
In particular, contrary to what is customary [7], we make no assumptions on determinism or confluence of
the transition relation→ of a dataflow process. For instance, it is allowed to have a process with multiple
transitions s

get1→ s1 and s
get2→ s2 emanating from the same state s. This would typically be interpreted as

the process choosing non-deterministically to read from channel 1 or from channel 2, something which is
not allowed in Kahn Process Networks. It is also possible to have non-determinism in the successor states,
e.g., s

get1→ s1 and s
get1→ s′1, with s1 6= s′1. These types of non-determinism are useful, for instance, when

abstracting data-dependent behavior.

An example dataflow process is shown in Figure 3. A is an SDF process with a single input queue and
a single output queue, represented by the incoming and outgoing arrows of A, respectively. A repeatedly
consumes 3 tokens and then produces 2 tokens, as indicated by the numbers annotating the arrows. Each
such repetition is called a firing of A. The firing lasts for 4 time units, as indicated by the number below

7



B

1

1
s0 s1

tick

tick

put

C

3

1
q0 q1 q2 q3

tick

get tick tick

tick

Figure 4: Source SDF process (top) and sink SDF process (bottom).

A in the figure. That is, from the moment the last of the 3 input tokens is consumed, until the moment the
first of the 2 output tokens is produced, in a given firing, 4 time units elapse. This behavior is specified at
the bottom of Figure 3. A has nine states, labeled s0, ..., s8. A waits at state s0 until there is a token to
consume, in which case the get transition occurs representing consumption of one token, and moving A to
state s1. For simplicity, we write get instead of get1, since there is only one input queue. Similarly we write
put instead of put1. After all three tokens have been consumed, A is at state s3. The next four transitions
are labeled with tick actions, representing the passage of time. Once four time units have elapsed, A is at
state s7 and is ready to output tokens, which is represented by transitions labeled with put actions. After
producing two tokens, A returns to its initial state for a new firing.3

Note that states s7 and s8 have self-loop tick transitions, as do states s0, s1, s2. Such transitions are
perhaps to be expected in states s0, s1, s2, since A receives its input tokens from an input queue, which
might be empty. As long as the input queue is empty, A must wait, therefore, it must allow time to elapse
at these states. The situation is similar in states s7 and s8: even though queues in dataflow semantics are
typically considered to be of unbounded size, in which case put actions can never be blocked, it is often
useful, as we shall see below, to consider an alternative semantics where queues are bounded. In that case,
put may block when a queue is full, and in that case time must be allowed to elapse.

A dataflow process may have no input queues, in which case it is called a source, or no output queues,
in which case it is called a sink. Examples of SDF source and sink processes are shown in Figure 4.

Note that Figures 3 and 4 are simply examples, and do not prescribe a way to capture SDF as dataflow
processes. In fact, as we shall see, there are different ways to model SDF operationally, and this is part of
the challenge in coming up with faithful models.

An example of a non-deterministic dataflow process is shown in Figure 5. This process has one input
and two output ports. After reading from its input, the process can non-deterministically choose two courses
of action: either to write to port 1 after two time units, or to write to port 2 after one time unit. Such
non-determinism is often the result of data abstraction. For example, consider a Kahn process which reads
a concrete value, tests this value, and based on the result of the test chooses to perform different types of
computation (requiring longer or shorter execution times) and write to different output ports. Such a process
can be captured as in Figure 5, where the test is replaced by a non-deterministic choice.

3 For simplicity, in our examples we assume no auto-concurrency, that is, no overlapping of firings of the same process. Auto-
concurrency can be captured in our model using more elaborate and potentially infinite-state processes.
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r0 r1 r2 r3

r4

tick tick

tick

get tick

tick

tick

put1

put2

Figure 5: A non-deterministic dataflow process.

3.1 Dataflow process semantics

A dataflow process A defines a set of behaviors of the form

s0
`0 // s1

`1 // s2
`2 // · · ·

where si ∈ S, `i ∈ L, and si
`i→ si+1, for all i. Intuitively, from state si, the process can perform action `i

and move to state si+1. If `i = tick then this action represents the passage of one time unit. Otherwise, the
action is instantaneous. Action geti means that A removes a token from its i-th input queue. Action puti
means that A adds a token to its i-th output queue.

As we did for FSMs, we will define a concept of observable behaviors for dataflow. This is a little more
involved to do for dataflow than for FSMs because in the case of dataflow, consecutive put and get actions
that are not “interrupted” by ticks are considered to be instantaneous. Therefore, it is reasonable to group
all such actions together in a set. We will do this, and define an observable behavior of A to be a sequence
α0α1 · · · obtained by a behavior ρ ofA, such that αi is either tick or a set of consecutive put and get actions
in ρ. For example, if

s0
tick // s1

put // s2
get // s0

tick // s1
get // s2

put // · · ·

is a dataflow behavior, then the corresponding observable dataflow behavior is

tick · {put, get} · tick · {put, get} · · · .

3.2 Queues

Dataflow processes communicate via FIFO queues. In our model, data is abstracted away, therefore, the
FIFO property of such queues is irrelevant, and does not have to be modeled. Therefore, we can easily
model queues as counters that count the number of tokens currently in the queue. We can capture such
counters using the same formalism as for processes. For example, the processes for an infinite queue and
for a finite queue are shown in Figure 6. Queues are assumed to have an implicit self-loop transition labeled
tick at every state: we omit these self-loops from the figures for the sake of simplicity.

3.3 Closed and open dataflow networks

A dataflow network is a collection of dataflow processes connected via queues. A dataflow network is closed
if every input port of every process in the network is connected to some output port. This includes the ports
get and put of queue processes, which are both inputs, since a queue is essentially a “passive” object: it
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0 1 2 · · ·

put

get

put

get

put

get

0 1 2

put put

get get

Figure 6: Queue processes: infinite queue (left) and queue of size 2 (right).

waits for a writer process to perform a put or for a reader process to perform a get, and it may sometimes
disallow these actions (when full or empty), but it cannot initiate them.

For example, the network shown in Figure 7 is closed. If we removed C, however, it would be open.
A network containing only process B would be closed. A network containing only process A of Figure 3,
however, would be open.

3.4 Dataflow composition

Having obtained formal behavioral models for dataflow processes and for queues, the semantics of a dataflow
network can be captured as the composition of the individual processes and queues. This composition can
be defined as a standard composition of processes with rendez-vous communication in the style of CCS [21]
or CSP [11]. In particular:

• a get action of a dataflow processA synchronizes with the get action of the process of the correspond-
ing input queue of A;

• a put action of a dataflow process A synchronizes with the put action of the process of the corre-
sponding output queue of A;

• tick actions synchronize across all processes in the network.

A composite process obtained by following the above rules is maximal in the sense that it contains all
possible behaviors of a network. Maximality is important to have in an open network, that is, one that could
be further composed (see paragraph below for a formal definition of open and closed networks). On the other
hand, in a closed network, maximality may sometimes result in including behaviors that are not interesting
or not optimal from a performance perspective. We may therefore need to exclude such behaviors. In order
to do this, we define two composition semantics, obtained by restricting the maximal set of behaviors by
adding extra rules.

Non-idling semantics

This semantics is obtained by computing the composition according to the above rules, and then removing
all self-loop transitions labeled with tick, except if such a transition is the only one left at a given state.
Indeed, such transitions represent idling where time passes without any process doing something useful.

Eager semantics

Non-idling semantics guarantees absence of idling but often we require something more, namely, that pro-
cesses consume and produce tokens as soon as possible. In order to obtain this eager semantics, we ad-
ditionally impose the following rule: a tick action is allowed at a given state only when no other action is
possible.
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Figure 7: A closed dataflow network N (top) and the corresponding composite dataflow processes: non-
idling (bottom-left) and eager (bottom-right).

Example

As an example, a dataflow network is shown at the top of Figure 7. It consists of the two SDF processes B
and C of Figure 4 connected via a queue of size 1. The non-idling and eager composite processes obtained
for N by following the rules described above are shown at the middle and bottom of Figure 7, respectively.
The states of the composite processes are product states, that is, vectors consisting of one element state
for each process in the network. To save space, we write ijk for a composite state instead of (si, j, sk).
Thus, 010 represents product state (s0, 1, q0) where B is at state s0, the queue is at state 1 (i.e., contains one
token) and C is at state q0. Notice that the eager semantics has no tick transition from that state, whereas
the non-idling semantics has one.

4 Conformance

Having defined formal models and semantics for hardware and dataflow, we proceed in attacking our main
problem, which is to define a formal conformance relation between the two. We are immediately faced with
a difficulty. FSMs and dataflow processes are different mathematical objects, with heterogeneous semantics.
How to compare them?

To overcome this difficulty, we take a pragmatic approach. Before defining conformance, let us recall
that dataflow models are usually employed for estimation of timing and performance properties of the HW
system. We examine such properties first, and then define conformance.
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4.1 Timing properties

At the dataflow level, timing properties can be defined by referring to basic events: token consumptions,
token productions, and the passage of time. More specifically:

• throughput can be defined by measuring how many tokens are produced within a given window of
time (or the limit of such);

• latency can be defined by measuring the amount of time that elapses between the consumption and
production of certain tokens;

• timing properties refer to which points in time certain consumptions or productions may or may not
occur.

For example, consider the SDF network N shown in Figure 7. We can define throughput as the asymp-
totic average of the number of tokens consumed by C per unit of time. In the behaviors of N , consumptions
are represented by get actions and time units by tick actions. Therefore, for a given behavior, we can com-
pute the throughput by counting the average number of gets per number of ticks. As we can see from the
composite processes for N shown in Figure 7, different behaviors achieve different throughput. In the non-
idling process, there are behaviors that achieve throughput 1

3 but also others that achieve throughput 1
4 . In

the eager process there is only one behavior that achieves the optimal throughput 1
3 .

As for latency, we can define it as the time delay between the production of a token by B and the next
corresponding consumption by C. This delay is not constant: it depends not only on the behavior of N ,
but it can also vary at different points within a behavior, for different productions and consumptions. In the
case of the example of Figure 7, the worst-case latency between a put and a get is equal to 3 ticks, and the
best-case latency is 0 ticks.

4.2 Conformance for closed systems

Having seen examples of typical properties that we are interested in, let us return to the question of confor-
mance. In this paper we tackle this question in the case of closed systems. The case of open system is the
subject of future investigation (see Section 5).

Suppose we want to compare a closed dataflow network such as the one of Figure 7 with a closed FSM.
When should one say that the FSM conforms to the dataflow network? A standard principle for defining
conformance in behavioral models is that of containment of sets of behaviors: a certain model M1 conforms
to another model M2 if the set of all possible behaviors of M1 is a subset of the set of behaviors of M2.

We would like to apply the above principle in our setting. However, we are still faced with the problem
that the behaviors of dataflow and FSM models are not directly comparable. In particular, although time
elapse is observable from the behaviors of FSMs (by simply counting the number of transitions), token
productions and consumptions are not directly observable at the FSM level. Indeed, it is not clear, by
looking at the input and output Boolean signals of an FSM as they take values across successive clock
cycles, when do token consumptions or productions occur.

To overcome this, we propose to make such events explicitly observable at the FSM level.4 More
specifically, with each put or get action of the dataflow network that we are interested in observing, we
associate a corresponding output signal of the FSM. The intended meaning is that whenever that signal
becomes 1, the corresponding production or consumption occurs.

4 An alternative could be to attempt to discover consumptions and productions automatically by observing the behavior of the
FSM. This problem is much more difficult, and is the topic of future work.
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Let us formalize this. Let N be a closed dataflow network and let L be the set of actions of N to be
observed. Let M = (X,Y, S, s0, δ, λ) be a closed FSM. Because M is closed, X = ∅. Let θ : L→ Y be a
1-1 mapping from L to Y , associating to each action ` ∈ L a distinguished output signal θ(`) ∈ Y serving
to observe action ` at the FSM level.

The mapping θ defines a mapping Θ from FSM observable behaviors to dataflow observable behaviors
as follows. Let σ = (a0, b0)(a1, b1) · · · be an observable behavior of M . Because X = ∅, all ak’s are trivial
(empty assignments). Then, each bk is mapped to a subsequence ρk = tick · αk, where

αk := {` ∈ L | bk(θ(`)) = 1}.

That is, αk is the set of all actions that are observed to occur at the FSM level, according to the distinguished
outputs that are true in bk. If αk is empty then we let ρk be simply tick. Then, Θ maps the FSM observable
behavior σ to the dataflow observable behavior Θ(σ) = ρ0 · ρ1 · · · .

For example, let L = {put, get} and Y = {yput, yget}. Let θ = {put 7→ yput, get 7→ yget}. Then we
have the following mappings from FSM observable behaviors to dataflow observable behaviors:

(yput = 0, yget = 0) · (yput = 1, yget = 0) · (yput = 0, yget = 1)

is mapped to
tick · tick · {put} · tick · {get}

and
(yput = 0, yget = 0) · (yput = 1, yget = 1) · (yput = 0, yget = 0)

is mapped to
tick · tick · {put, get} · tick.

Having specified this mapping, we define two types of conformance as follows:

Definition 1 M conforms to the non-idling (respectively, eager) semantics of N with respect to mapping θ
iff for every observable behavior σ of M , the sequence Θ(σ) defined as above, is an observable behavior in
the non-idling (respectively, eager) semantics of N .

It is worth noting that if N is a dataflow model whose eager semantics is a subset of its non-idling
semantics (e.g., as in a KPN), then, if M conforms to the eager semantics of N then it also conforms to the
non-idling semantics of N .

Also note that since M is a closed FSM, it is by definition a Moore machine, and since we consider
deterministic FSMs, M has a single behavior. We could therefore simplify the above definition to state “for
the unique observable behavior σ of M” instead of “for every observable behavior σ of M”. We prefer not
to do so, however, in order to have a definition that generalizes to the case of non-deterministic FSMs.

We proceed to illustrate conformance by examples.

4.3 Examples of conformance and non-conformance

Consider the dataflow network N shown in Figure 7 and the FSM M shown in Figure 2. Let θ be the
mapping

θ = {put 7→ v1, get 7→ v2}.
That is, at the level of M , every time v1 = 1 this corresponds to a put in the buffer, and every time v2 = 1
this corresponds to a get.

We claim that M conforms to both the eager and non-idling semantics of N with respect to θ. As shown
in Figure 2, M has a single infinite behavior yielding the infinite observable behavior
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Figure 8: Top: three variants, M11,M12,M13, of FSM M1 of Figure 2. We compose each of these with
M2 (without use of Mbuf in the middle). Let states of M2 be labeled q0, q1, q2. Let states of M1i be labeled
s0, s1. Resulting three composite FSMs are shown. In each of the composites, state sij is composed of si
of M1k and qj of M2, and vector in the lower half of each state denotes values of signals r = r1 = r2 and
v = v1 = v2 respectively in that state.
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Figure 9: Two variants of SDF process D.

σ = (r1, v1, r2, v2) · (r1, v1, r2, v2)·(
(r1, v1, r2, v2) · (r1, v1, r2, v2) · (r1, v1, r2, v2)

)ω
where ρω denotes the infinite repetition of a sequence ρ.

σ is mapped to the dataflow observable behavior

Θ(σ) = tick · {put, get} · tick · {put} ·
(
tick · tick · {put, get} · tick

)ω
.

It can be seen that Θ(σ) is identical to the observable behavior of the eager semantics of N – Figure 7,
bottom. Therefore, M conforms to both the eager and non-idling semantics of N .

Consider next Figure 8. The figure shows three variants of FSM M1 of Figure 2 and the synchronous
FSM composition of each of these variants with FSM M2 of Figure 2. Note that the buffer FSM Mbuf is not
used in these compositions. Let r = r1 = r2 and v = v1 = v2 be the names of the signals of the composite
FSMs.

Define θ = {put 7→ v, get 7→ q0 ∧ v}. The expression get 7→ q0 ∧ v means that we interpret v to
correspond to a get action only when M2 is at its initial state q0, otherwise, even if v = 1, we will not
consider this a get. We use such expressions merely for reasons of convenience, without departing from the
framework we set up above. Indeed, we could easily consider an additional signal v′ defined to be 1 iff M2

is at q0 and v = 1. Then, we could define θ equivalently as θ = {put 7→ v, get 7→ v′}. Therefore, using
such expressions is not more expressive than our original framework.

With the above mapping θ, the observable behaviors of the three composite FSMs are mapped to the
following observable dataflow behaviors:

1.
(
tick · tick · {put, get} · tick · {put} · tick

)ω,

2.
(
tick · tick · {put, get} · tick · tick

)ω,

3.
(
tick · tick · {put, get} · tick

)ω.

None of these composites conforms to dataflow network N of Figure 7, because N does not admit the
starting sequence tick · tick · {put, get}. This non-conformance indicates that SDF process B of Figure 4
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may incorrectly capture HW blocks M1k. Indeed, B can produce a token every 1 time unit, whereas it
appears that, M1k require 2 time units.

Instead of B, consider SDF process D of Figure 9 and dataflow network NDC shown at the top of
Figure 10. NDC is similar to the network of Figure 7 except that B is replaced by D. NDC defines two
composite dataflow processes, one for each of the two variants of D: the two composite processes are
denoted N1 and N2 and are shown in Figure 10. Then:

1. M11 ×M2 conforms to neither N1 nor N2. On inspecting the behavior of M11 ×M2, it is evident
that every other token generated by M11 is dropped, i.e., it is not read by M2 because M2 is busy
processing the previous token. This is a case of wrong synchronization between the two FSMs, which
is revealed by attempting to show conformance to an SDF model.

2. M12×M2 does not conform to N1, but conforms to the non-idling semantics of N2. In this case, one
may interpret M12 ×M2 as a non-idling implementation of NDC where the execution of D and C is
pipelined in such a way as to overlap the last cycle of C with the first one of the next D, achieving a
non-optimal throughput of 1

4 . Such a pipelining can be captured by N2 but not by N1. This indicates
that N1 is not a faithful model of this HW. Also, although M12 × M2 conforms to the non-idling
semantics of N2, it does not conform to its eager semantics, and indeed, does not achieve the optimal
throughput of 1

3 .

3. M13 ×M2 conforms to the non-idling semantics of N1 and therefore also of N2 since N1 is a subset
of N2. M13×M2 achieves optimal throughput 1

3 . Despite this, its behavior is not eager, and therefore
it does not conform to the eager semantics of N1 or N2.

4.4 Discussion

As seen from the examples presented above, conformance can be used in a number of different scenarios.
It can provide guarantees of throughput preservation between dataflow models and HW implementations.
It can point to timing or synchronization errors in HW implementations, or to inadequacies of the dataflow
model of the HW. Thus, our framework can be used in a bottom-up methodology where HW is given and
the goal is to build faithful performance models of this HW, as well as in a top-down or model-based design
methodology where the goal is to synthesize from a high-level model (e.g., SDF) a HW implementation that
preserves the properties of the model.

The definition of conformance as containment of behaviors allows to derive such preservation for prop-
erties of type “for-all”. More precisely, if a property P is stated as “for all behaviors of N something holds”
then if N satisfies P , any model whose behaviors are a subset of N also satisfies P .

Conformance can be used in particular to show preservation of performance bounds such as worst-case
or best-case throughput and latency. For example, bounds on throughput can be expressed using “for-all”
properties of the form “for any behavior ρ, the throughput of ρ is in [Tmin, Tmax]”.

Our conformance relation is essentially a language inclusion type of conformance, modulo the fact that
a translation Θ from FSM behaviors to dataflow process behaviors needs to be performed first. Such a
translation can be performed automatically by appropriately transforming an FSM into another type of finite
automaton. If the process automaton is also finite-state, then conformance can be checked automatically,
using standard model-checking type of techniques [3].
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Figure 10: Top: closed dataflow network of actors D,C connected using queue of size 1. Bottom-left:
composite non-idling dataflow process, N1, using left-most variant of process D from Figure 9. Bottom-
right: composite non-idling dataflow process, N2, using right-most variant of D. In each of the composites,
the corresponding eager composition is embedded, as shown by edges with double arrowheads.
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5 Conclusions and Future Work

We have investigated the question of faithfulness of dataflow models to hardware implementations by
proposing a formal conformance relation between the two. The examples of dataflow processes presented
above are SDF, but our process model is general enough to capture other dataflow variants as well. Since
conformance is defined with respect to the process model, this means that the framework is applicable to a
wide class of dataflow models.

Our current study is limited to closed systems. One of our future goals is to study conformance between
open systems, with the main challenge being to guarantee some notion of compositionality. For instance, we
would like our framework to guarantee that if M1 conforms to N1 and M2 conforms to N2, then M1 ×M2

conforms to N1||N2 (where || denotes dataflow composition). This is essential for scalable conformance
checking, but also for incremental design, where a HW component can replace another one without com-
promising the properties of the overall system.

Another direction of future work is to develop “recipes” for generating dataflow processes such as the
ones used in the examples above for a variety of dataflow models (SDF, CSDF, HDF, ...). Developing
specialized algorithms for checking conformance with respect to these subclasses is an additional interesting
objective.

An alternative way to bridge the gap between dataflow and hardware is to give them both semantics in
terms of the denotational actor model of [8]. This has already partly been done in [8] for SDF but not for
general dataflow. It has also been done in [8] for different models of discrete automata, but not for the Mealy
and Moore machines which are the standard hardware models. Once both dataflow and hardware are given
actor semantics, they “live in the same world” and can therefore be compared using the refinement relation
defined in [8], or another relation such as the one based on subsets of behaviors that we employ here.
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